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Stable propagation of an ordered array of cracks during directional drying

E. A. Jagla
Centro Atómico Bariloche and Instituto Balseiro, Comisio´n Nacional de Energı´a Atómica, (8400) Bariloche, Argentina

~Received 20 December 2001; published 11 April 2002!

We study the appearance and evolution of an array of parallel cracks in a thin slab of material that is
directionally dried, and show that the cracks penetrate the material uniformly if the drying front is sufficiently
sharp. We also show that cracks have a tendency to become evenly spaced during the penetration. The typical
distance between cracks is mainly governed by the typical distance of the pattern at the surface, and it is not
modified during the penetration. Our results agree with recent experimental work, and can be extended to three
dimensions to describe the properties of columnar polygonal patterns observed in some geological formations.
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I. INTRODUCTION

The appearance of cracks when a material shrinks
common phenomenon in everyday life. The most popu
examples are probably the cracks appearing in paint lay
and those on the surface of mud. In the case of paints, t
is a superficial layer of material that shrinks on top of
substrate to which it is attached. For mud, the superfi
layer and the substrate are the same material, but differe
in the humidity concentration produces the cracking at
surface. In these two cases, the shrinking is due to chang
the humidity concentration within the sample, but it can a
be due to the existence of nonuniform temperature distr
tions, which produces stresses and generates cracking.
problem of surface fragmentation has been studied in the
few years, both theoretically@1# and experimentally@2#.

There are situations in which cracks appear at the sur
of the material, and penetrate into the sample later on
well-known example corresponds to the columnar fractur
of basaltic lava, seen in many different geographical lo
tions @3#. A detailed description of this problem has on
recently been foreshadowed@4,5#, and still some points re
main obscure. The two-dimensional equivalent of the colu
nar structure of basalts corresponds to the case of a
dimensional material that dries~or cools down! starting from
a free edge. As in the three-dimensional case, drying cre
internal stresses in the material, generating cracks that
appear at the free edge. As the drying front propagates to
interior the cracks do so as well. There have been differ
experimental realizations of this phenomenon. In one
them @6# the material was a very thin layer of a colloid
dispersion placed between two glass sheets, with one
edge, from which humidity can escape. In other experime
@7#, a slurry of Al2O3-water mixture was deposited onto
substrate, and a glass sheet was placed a few millime
above it. A low, ultra dry N2 gas breeze was injected into th
slot above the sample. The N2 becomes saturated with wate
as it passes over the material, and a rather sharp drying
propagates with time in the same direction as the air flow
third realization corresponds to the drying of thin films
aqueous silica sol gel, where very nice patterns have b
observed@8#. In all these cases the propagation of a set
parallel cracks has been observed.

A detailed theoretical description of this phenomenon
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lacking, and we will make an attempt in this direction for th
two-dimensional case. In the following section we will pr
vide a general description of the phenomenon, emphasi
the difference with a more standard fracture mechanics p
lem. In Sec. III we present the calculations of elastic a
crack energy for the case in which the drying~or cooling!
front is sharp. In Sec. IV we discuss the conditions un
which the crack front~formed by the tips of all cracks! is
stable, and progresses into the material when the drying f
advances. In Sec. V we show that the array of cracks ge
ated at the surface of the material becomes evenly spa
when it penetrates the sample, and that the typical width
the stripes is determined mainly during the first stage of
process, near the surface. In Sec. VI we briefly comm
upon the effects of other drying~or cooling! conditions than
the one studied previously. Section VII contains some imp
cations of our work for the study of the three-dimension
case. Finally, in Sec. VIII we summarize and conclude.

II. QUASISTATIC FRACTURE MECHANICS: ENERGETIC
AND STRESS ANALYSIS

One remarkable thing about the experiments cited in
preceding section@6–8# is the fact that a large number o
cracks penetrate the sample in a coordinated and quasis
manner, as the external conditions~the humidity profile!
change. Then this problem is qualitatively different from
typical problem in fracture mechanics, where the propa
tion of a crack is usually an abrupt phenomenon and ty
cally leads to the failure of the material. In standard fractu
mechanics, stress and energetic analysis are two diffe
ways of predicting the evolution of the fracturing proce
@9#. However, the equivalence of both approaches is not c
@10#, particularly in cases in which the cracks propagate
large speeds, which is almost always the case when fai
occurs.

The situation is different in our case. Cracks propag
only because the external humidity profile changes. If
external conditions were stationary, crack advance would
arrested. If we consider the configuration of the system a
point in configuration space~the space spanned by all coo
dinates of all particles of the material!, at each moment the
system is at one minimum of the energy landscape. As
humidity profile changes, the landscape changes itself,
©2002 The American Physical Society47-1
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minimum on which the system is located shifts, and the c
figuration of the system adapts so as to remain in the shi
local minimum. This is what we understand as a quasist
propagation of cracks@11#.

Under these conditions, the propagation of cracks i
two-dimensional geometry can be studied by two differ
but equivalent procedures. Stress analysis consists of the
culation of the stress intensity factors@9# KI andKII of the
opening and shearing modes at the tips of the cracks pre
in the system. The propagation will occur in the directi
along whichKII 50, which coincides with that for whichKI
is maximum. Propagation actually occurs only if the ene
relieved by the advance of the cracks is enough to overc
the fracture energy needed to elongate the cracks. In
quasistatic case, these two energies will differ only infinite
mally.

In the energetic procedure used to calculate crack
vance, the total energy~including elastic and crack energy!
after virtual advances of the cracks is calculated. Cracks
actually propagate only if this propagation reduces the t
energy. Under quasistatic advance the energy reduction
ing propagation is infinitesimally small, and typically, the
is only one possible direction of propagation for each cra
All other propagation directions would produce an increa
in the total energy of the system.

Both approaches are equivalent in the case of quasis
advance of the cracks. We will use stress analysis or e
getic analysis according to convenience in each case.

III. ESTIMATIONS OF ELASTIC AND CRACK ENERGY

We will consider an isotropic and homogeneous mater
and assume that linear elasticity can be applied@12#. It is
well known that in this case the material possesses only
independent elastic constants@13#. We will take as these two
parameters the bulk modulusC and the Poisson ration. The
expansion or contraction properties of the material are
scribed by a humidity expansion coefficienta, which is for-
mally equivalent to the thermal expansion coefficient, i
the relative change of linear sizedL/L of a piece of material
after changing the humidity concentrationh by some quan-
tity Dh is given by

dL/L5aDh. ~1!

The ideal situation we will address consists of a se
infinite two-dimensional sample that is being dried from
surface. The drying will be considered to be nonhomo
neous, and we will model it by a humidity profile that
given by some functionh(z,t) depending on depthz within
the material, and timet. The precise form of this function
will be specified later for different experimental situation
but it is important to point out that we do not consider t
case in which the appearance of cracks in the system m
fies the drying process itself. Then our analysis applies m
to cases as that described in Ref.@7# and possibly Ref.@8#,
but much less to that in Ref.@6# where evaporation of hu
midity through the cracks seems to be relevant~see also Ref.
@14#!. Although in the experimental situation the mater
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usually lies on top of a substrate, we will study the case
which there is no interaction between the material and
substrate. In the experiments of Ref.@7# this is achieved by
introducing a layer of some slippery material between
sample and the substrate. Then, all the stresses on the sa
are originated internally, and are due to the existence o
nonuniform humidity concentration.

It is known that in an isolated~namely, not clamped! piece
of homogeneous material placed under a constant therma~or
humidity! gradient all stresses vanish in linear elastic a
proximation@15#. Under these conditions cracks cannot a
pear at all, or if already present from the beginning th
propagation is completely halted. It is in fact crucial for th
propagation of cracks that the humidity gradient is not co
stant within the sample.

We will take the edge of the semi-infinite sample as t
z50 line, andz.0 in the interior. For convenience, we wi
also refer to the edge as the ‘‘surface,’’ and consider it to
horizontally placed, in such a way that the cracks propag
down the material. Att50 the whole material is supposed
have a constant humidity concentrationh0. In this situation
the material is unstressed. Humidity concentration is
sumed to decrease with timeh(z,t.0)<h0. For any reason-
able experimental realization of the drying process occurr
from thez50 free surface, it is clear that at any time, we
inside the material we should reach the original humid
concentration, i.e.,h(z→`,t)5h0. Then the majority of the
material is always at constant humidityh0. In this region the
sample must be unstressed, otherwise it will store an infi
amount of energy. Then a boundary condition for our pro
lem will be that stresses go to zero asz goes to infinity. As a
simplification of a possible experimental situation, we w
consider the case of an abrupt drying profile~see Fig. 1!,
namely, h(z,t)5h0 for z.z0(t), and h(z,t)5h1 for z
,z0(t), with h1,h0, andz0(t) being an increasing function
of time.

A given set of cracks will always correspond to a loc
minimum of the total energy of the system. The total ene
is the sum of two different parts. One is the fracture ener
namely, the energy spent in the creation of all fractu
present in the sample. This is typically proportional to t
total length of cracks in the material. The second part is

FIG. 1. Sketch of the process studied. There is a sharp dry
profile at depthz0, with z0 increasing slowly with time. As this

occurs, the crack front~located atz̄) penetrates more deeply into th

material. The distancez̄2z0 ~which can be positive or negative
depending on the parameters! remains constant in time.
7-2
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STABLE PROPAGATION OF AN ORDERED ARRAY OF . . . PHYSICAL REVIEW E 65 046147
elastic energy stored in the sample. Let us suppose we
an evenly spaced array of cracks, defining stripes of widtl,
which have penetrated down to some distancez̄, with the
drying front being located at some positionz0. The elastic
energyeel stored in the material per unit of horizontal leng
must be proportional to the bulk modulus of the materialC,
and to the second power of the typical change in linear d
sity caused by the humidity gradient@this change being
aDh, with Dh[(h02h1)#. This is at the basis of linear elas
ticity theory. Using the fact thatl andz̄2z0 are the only two
relevant lengths for this geometrical configuration@16#, di-
mensional analysis allows us to write down the followi
expression foreel,

eel5~aDh!2Clg„~ z̄2z0!/ l …, ~2!

whereg(x) is a dimensionless geometrical function@17#. We
have determinedg numerically and the result is shown i
Fig. 2 as a continuous line. We can rationalize the gen
form of the functiong(x), considering how the elastic en
ergy is distributed along thez direction. The total energyeel
is the integral overz of the density of elastic energydeel(z).
In Fig. 3 we show qualitatively the form ofdeel(z) for the
casesz̄!z0, and z̄@z0. Let us consider first the casez̄!z0
@Fig. 3~a!#. deel(z) is zero for z.z0, since as we already
discussed, the material has to be unstressed forz→`. In the

FIG. 2. The functionsg(x) ~continuous line! andx(x) ~dotted
line! for a material with Poisson ration51/3. The values ofx for
which x(x).0 are those corresponding to a stable flat crack fro

FIG. 3. Sketch of the density of energydeel as a function ofz

for a set of fractures that has penetrated down toz̄,z0 ~a!, and z̄
.z0 ~b!. The contraction of the stripes is exaggerated for clarity
04614
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region z0.z. z̄ there is a rather constant energy dens
associated with the change in humidity concentration, wh
cannot be compensated by a change in density of the m
rial since the material here is attached to the part belowz0
@18#. Around the position of the crack front there is an i
crease in the stored elastic energy, which is associated
the elastic energy around the tips of the cracks. Forz, z̄ the
elastic energy density goes to zero, since here the exist
of the cracks makes it possible to relieve the elastic ene
accumulated prior to the crack formation. The linear dep
dence ofg(x) as x→2` ~i.e., for z̄!z0) comes from the
energy stored betweenz̄ andz0. Let us consider now the cas
whenz̄@z0 @Fig. 3~b!#. The elastic energy becomes indepe
dent of z̄, as the crack tips are in a region of material that
unstressed. The constant value ofg(x) as x→1` comes
from the energy stored in the independent stripes around
position of the humidity front, which in this limit is well
behind the crack front. Whenz̄.z0 there is a smooth cross
over between the two limiting regimes.

To determine the actual position of the crack front in
realistic situation we will rely upon the energetic argume
At any time during the drying process, the crack front will b
located at the position that minimizes the total energy of
system. Equation~2! gives the elastic energy of a set o
cracks that have penetrated down to the positionz̄. In order
to get the total energy,eel has to be added to the energy co
of creating the cracks. This part, when measured per un
horizontal length, will be called the crack energyeck , and it
is simply given in terms of the specific energy fracture of t
materialh in the form

eck5h z̄/ l . ~3!

In order to determine the value ofz̄ at which the fracture
front prefers to be located, we have to minimize the to
energyetot5eel1eck . The result we obtain is shown in Fig
4, where we plot the most convenient position of the cra
front as a function of the parameteru[h/@C(aDh)2l #. For
small values ofu, x[( z̄2z0)/ l takes large and positive val
ues, i.e., the crack front is located well below the humid

t.

FIG. 4. Position of the crack frontx[( z̄2z0)/ l as a function of
u[h/@C(aDh)2l #, obtained by minimizing the total energy of th
system. The region at the left ofucr corresponds to a stable situatio
in which all tips of the cracks form a stable crack front, whereas
the right of this value the flat crack front is unstable.
7-3
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E. A. JAGLA PHYSICAL REVIEW E 65 046147
front. This is due to the negligible contribution of the cra
energy compared to the elastic energy in this case. Au
increasesx decreases, crossing zero~namely, the crack front
coincides with the humidity front! at u.0.66. x tends to
2` asu approaches the limiting valueu0.1.14. In fact, for
u.u0 the crack energy is so high that the cracks do
penetrate the sample at all@19#.

Under the conditions analyzed in this section, the cra
front will be located at a position such that (z̄2z0)/ l is given
by the function plotted in Fig. 4. The crack front advanc
only due to changes in the position of the humidity frontz0,
always keepingz̄2z0 as constant.

IV. STABILITY OF THE FLAT CRACK FRONT

The previous analysis has assumed that all cracks
etrate down to a uniform depthz̄, and has focused on wha
the value ofz̄ is, on energetic grounds. It has to be comp
mented, however, with a stability analysis of the crack fro
The necessity of this is clear from the following example.
a material with an array of vertical cracks is loaded with
uniform horizontal stress~this situation can be thought to b
realized in our case ifz̄!z0), there will typically be a single
crack that propagates and fractures the material. This
consequence of the fact that as soon as a single crack m
forward a small distance, the stress at its tip increases,
those at the tips of the other cracks decrease. This gene
an unstable, rapid propagation of a single crack. We will
that in our case, this can be compensated by the fact
stresses decrease ahead of the humidity front, and this
stabilize a flat crack front.

The same kind of energetic arguments used in the pre
ing section will be used to determine the stability conditio
of the crack front. Consider an evenly spaced set of cra
labeled sequentially by an indexj, where now the tips of the
cracks are at vertical positionszj , which can be slightly dis-
placed from the mean positionz̄, i.e., zj5 z̄1d j , with ( jd j
50. The horizontal positions of the cracks are given byxj

5 j l . The elastic energy of this configuration contains a te
of the form ~2!, plus a correction that can be expanded
powers ofd j / l . The first-order term in this expansion va
ishes, as( jd j50. The second-order term can be written
the form

Deel5 l 22S a(
j

d j
21b(

j
d jd j 111c(

j
d jd j 121••• D .

~4!

Successive terms contain ‘‘interactions’’ between more d
tant cracks. As the elastic energy is a local quantity, we
pect uau,ubu,ucu,•••. Any small displacement of the
crack front, defined by the quantitiesd j can be decompose
in a sum of ‘‘normal modes,’’ by going to the Fourier repr
sentation

d j[(
k

d̃kexp~ ikxj !, ~5!
04614
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and the energy decomposes into independent terms, in
form

Deel;(
k

ud̃ku2@a1b cos~kl !1ccos~2kl !1•••#. ~6!

In order for the flat crack front to be stable,Deel must be
positive for any choice of thed i , and thus of thed̃k . This
implies that

a1b cos~kl !1c cos~2kl !1••• ~7!

must be positive for allk. In the limit of very smallk, Deel is
equivalent to a uniform advance of the crack front, and th
is has to be a positive quantity, as the curvature ofeel( z̄) is
always positive@see Eq.~2! and Fig. 2#. On the other hand, It
will be proportional to the sum of all coefficients in expre
sion ~7!, i.e., Deel

k→0;a1b1c1•••. Then it is clear that if
an instability exists for some value ofk, it will occur at k
5p/ l , where Deel

k5p/ l;a2b1c2•••. Then we will ana-
lyze the stability of the flat crack front against a perturbati
with k5p/ l . We took the equilibrium position of a crac
front obtained in the preceding section~plotted in Fig. 4! and
calculated numerically the quadratic change in energyDeel
5x(x)(aDh)2Cd2/ l when a perturbation ofk5p/ l and am-
plituded is introduced. The dimensionless functionx(x) can
be seen in Fig. 2~dashed line!. We see thatx is positive
~negative! for x greater~lower! than xcr.20.038. In this
way, we obtain that there are two regions in the plot of F
4. The one at the left ofucr.1.02 corresponds to a stab
situation. If the parameters of the system make the patter
cracks to lie in that region, then the time evolution of t
drying process~i.e., the increase with time ofz0) will pro-
duce a smooth advance of the crack front, keeping alw
the same value of the distancez̄2z0 to the humidity front. At
the right ofucr , the pattern is unstable. Should we have o
of those patterns at a given time, it will immediately prop
gate forward some of its cracks~ideally, one of each two
cracks!, in order to reach a stable situation. This will imp
in particular that some cracks will remain halted. The furth
evolution of the crack front will correspond to a new cra
pattern with less cracks~i.e., with largerl ! being propagated

V. APPEARANCE AND ORDERING OF CRACKS

Up to now we have assumed that a set of evenly spa
cracks exists, and we focused on its stability conditions.
will study now how this pattern can appear, starting with t
process at the surface. Cracks are not expected to ap
evenly spaced at the surface. In fact, it is known in the o
dimensional models of surface fragmentation@21# ~that can
be used to represent the first stage of cracking of our t
dimensional problem! that the distribution of fragment lengt
is strongly dependent on the presence of small inhomoge
ities in the material, making the fragment length distributi
broad. But we will see that as the superficial cracks penet
the sample they become evenly spaced. We will first disc
the process of nucleating new cracks at the surface, and
7-4
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STABLE PROPAGATION OF AN ORDERED ARRAY OF . . . PHYSICAL REVIEW E 65 046147
argue that the cracks become evenly spaced as they pen
the sample.

A. The appearance of cracks at the surface

When the drying front penetrates the material from
surface, and before the material gets cracked, the stresse
be calculated very simply. The state of the system co
sponds to the material being completely unstrained horiz
tally ~considering the unstrained state as that correspon
to the humidity valueh0 that occurs well inside the material!.
Under this condition a uniform horizontal stressT0 appears
for all z,z0, which is simply calculated asT05CaDh. In
order for the first crack to appear, this value has to overco
the uniform traction resistance of the materialTr @22#:

CaDh.Tr . ~8!

If this relation is not satisfied, no cracks will appear whats
ever. Assuming that the relation~8! is satisfied, the first crack
will nucleate at the surface. This crack penetrates the sam
as long as this penetration reduces the total energy of
system. In our case, the crack penetrates only down
distanced0 of the order ofz0, where the humidity front is
located. The horizontal stress at the surface is now zero a
position of the crack, and increases as we move away f
it, reaching the valueF0 at large distances from the crac
This means that new cracks will nucleate away of the fi
one, in regions where relation~8! is still satisfied. The num-
ber of cracks nucleated at the surface will typically be
minimum number that makes the horizontal stress at ev
point of the surface lower thanTr . The typical distance be
tween cracksl can then be estimated to be@21#

l .d0f ~T0 /Tr !, ~9!

where the geometrical functionf (T0 /Tr) goes to infinity
whenT0→Tr

1 , and is of order 1 forT0@Tr . Typically, l is
a few timesd0.

If we stick to the ideal sharp drying front we have be
studying, the first crack appears for an infinitesimally sm
value of z0, the only restriction is that the relation~8! is
satisfied. Therefore, since the depth of the first crackd0 is of
the order ofz0, we should expect a very dense set of sup
ficial cracks. However, this unrealistic situation is removed
we note that any physical drying front will have some typic
~finite! humidity gradient¹h. At the moment when relation
~8! is first satisfied~with Dh being now the difference be
tween humidity concentrations right at the surface, and w
inside the material!, the first crack will penetrate down to
distance

d0.Dh/¹h5Tr /~Ca¹h!, ~10!

and the typical distance between cracks at the surface wi
a few times this distance.

B. How the distribution of cracks becomes uniform

The cracks that appear at the surface of the sample nu
ate at positions that are strongly influenced by the prese
04614
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of small inhomogeneities in the sample@21#. But a superfi-
cially uneven set of cracks has a tendency to become ev
spaced as it penetrates the sample. The reason for this
dency can be understood on an energetic basis. For a fi
number of cracks the evenly spaced configuration co
sponds to the minimum of elastic energy. It is then cle
using the energetic arguments, that this configuration will
approached during the propagation process@23#.

It is important to clarify the different effects that the in
homogeneities have on the creation and propagation
cracks. For the superficial layer, inhomogeneities are
evant, and responsible for the broad distribution of fragm
lengths @21#, since at the beginning all the surface is un
formly stressed, and tiny differences in the properties of
material will dictate which point of the surface will fail first
However, once the array of cracks has been defined at
surface, inhomogeneities play a secondary role, since
cracks do not appear during penetration, and the elastic
ergy is only very weakly dependent on the precise distri
tion of defects. Then the evolution of the pattern is basica
the same as if inhomogeneities were absent.

The previous energetic arguments predict the trend tow
evenly spaced cracks as they penetrate the sample. S
analysis allows to reobtain and make this result quantitat
We have calculated the stresses that are present in the s
infinite sample with a sharp drying front, in the presence o
particular uneven set of parallel cracks. We took an infin
set of cracks separated sequentially by distancesl 1 and l 2.
For this geometrical configuration we have determined
merically the direction of maximum opening stress~mode I!,
at the tips of the fractures, and characterized it by its angu
with respect to the direction of forward advance. The fi
result is thatu always points in the direction of making th
pattern more evenly spaced. The actual value ofu is abso-
lutely independent of the values ofC andh of the material,
and also on the valueDh of the step of the humidity front. It
is in fact a quantity that only depends on the Poisson ratin

of the material and the values ofx[( z̄2z0)/ l and (l 1
2 l 2)/( l 11 l 2). The results for the angleu, for a material
with n51/3 can be summarized as follows.u is rather inde-
pendent ofx, and within a maximum 10% error, it can b
written as

u~deg!.29~ l 12 l 2!/~ l 11 l 2!. ~11!

The value ofu vanishes forl 15 l 2, as in this case the patter
is actually evenly spaced, and the cracks advance straigh
wardly by symmetry. The limiting casel 1@ l 2 givesu.29°
@24#. This is the maximum bending we can expect from
given crack, in the process of uniformizing the widths of t
stripes. Note that as a consequence of the fact that there
no typical lengths in Eq.~11!, the length needed for the pa
tern to become evenly spaced will be proportional to
typical width of the stripesl.

Once the cracks have started to deviate in order to red
the elastic energy as much as possible, the further deta
prediction of its evolution becomes more difficult, since no
we should calculate stresses ahead of a set of nonpar
fractures~or alternatively, the elastic energy of this nontrivi
7-5
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configuration of curved cracks!. However, the main conclu
sion that the pattern becomes evenly spaced in a distanc
the order of the stripes widths remains@26#.

VI. DEPENDENCES ON THE CHARACTERISTICS OF
THE DRYING FRONT

The sharp drying front is an idealization that is nev
exactly realized in practice. For the experiments of Ref.@7#,
for instance, a typical distance over which humidity chang
is expected. In other cases in which the drying is throu
surface diffusion, the humidity profiles are still smoother.
we have already discussed, the stability reason of a flat c
front in the case of a sharp humidity step is due to the ra
reduction of stresses ahead of the crack front. Smoother
midity profiles will produce a weaker tendency to generat
flat crack front, and it can even occur that a flat crack fron
never stable if the humidity profile is smooth enough. In t
case, a pattern of bifurcations of the crack front has b
predicted@27#. Note that an additional stabilizing factor o
the crack front exists when the drying is favored by the pr
ence of the cracks themselves@14#, a case we have not ad
dressed here.

VII. IMPLICATIONS FOR THE THREE-DIMENSIONAL
CASE

The same phenomenon we have been discussing acq
novel characteristics in a three-dimensional geometry. It
a beautiful realization in the geological formations nam
columnar basalts, which can be reproduced in a kitchen
periment using corn starch@28#. When an originally hot vol-
canic lava flow starts to cool down~after solidification!, the
thermal stresses generate cracks at the surface, which p
gate progressively towards the interior of the igneous bo
There are many coincidences with the two-dimensional c
and also some new features@3–5#. Cracks are known to ap
pear at the surface and at later times propagate to the inte
At the surface the pattern of cracks is rather disordered,
becomes progressively ordered as it penetrates the mat
In three dimensions, the tendency to order manifest in p
gressive tendency to form a polygonal pattern of cracks
planes parallel to the surface. Qualitatively, this tendency
order can be understood on the same basis as the
dimensional case, as a tendency of the system to reduc
total energy as much as possible during the evolution
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poses, however, some interesting problems, because
cally, the expected perfect hexagonal pattern is not reac
but a collection of polygons with a different number of sid
and areas is observed instead. It has been recently dem
strated@5# that this is a consequence of the fact that t
pattern starts being disordered at the surface, and in the
cess of minimizing the energy it is not able to reach t
absolute minimum~namely, the honeycomb pattern! but is
trapped in a metastable minimum. Based on the argum
for the two-dimensional case, we can also expect in thr
dimensions that the typical width of the columns is set by
typical distance between cracks at the surface, and it is
modified with the further penetration. In fact, this is what
experimentally observed, since columns are seen to k
their horizontal size over distances that reach a hund
times the width of the columns. For the three-dimensio
case, the cooling through diffusion plus convection~and/or
radiation! at the surface is the most realistic model of cooli
to consider. Although this type of cooling can lead in tw
dimensions to the instability of the flat crack front, this is n
necessarily so in three dimensions, since in this case all f
tures form a connected structure, and this generates an a
tional tendency to stabilize the crack front. These issues
some additional ones particular to the three-dimensional c
will be discussed in a forthcoming paper.

VIII. SUMMARY AND CONCLUSIONS

In this paper we have focused on a two-dimensional m
terial that cools down or dessicates from one edge. We s
ied the conditions under which a set of cracks penetrate
sample during the process. We showed that these cracks
a tendency to become evenly spaced, and analyzed the
ditions for which all the tips of the cracks form a plane fron
Our results provide a quantitative framework to analyze
cent experiments. Extensions to the three-dimensional c
are expected to provide both a qualitatively similar scena
and also some new features that will be fully developed e
where.
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