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Stable propagation of an ordered array of cracks during directional drying
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We study the appearance and evolution of an array of parallel cracks in a thin slab of material that is
directionally dried, and show that the cracks penetrate the material uniformly if the drying front is sufficiently
sharp. We also show that cracks have a tendency to become evenly spaced during the penetration. The typical
distance between cracks is mainly governed by the typical distance of the pattern at the surface, and it is not
modified during the penetration. Our results agree with recent experimental work, and can be extended to three
dimensions to describe the properties of columnar polygonal patterns observed in some geological formations.
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I. INTRODUCTION lacking, and we will make an attempt in this direction for the
two-dimensional case. In the following section we will pro-
The appearance of cracks when a material shrinks is ®ide a general description of the phenomenon, emphasizing
common phenomenon in everyday life. The most populathe difference with a more standard fracture mechanics prob-
examples are probably the cracks appearing in paint |ayer§m. In Sec. lll we present the calculations of elastic and
and those on the surface of mud. In the case of paints, thefack energy for the case in which the dryit@ cooling
is a Superficia| |ayer of material that shrinks on top of afront is sharp. In Sec. IV we discuss the conditions under
substrate to which it is attached. For mud, the superficiawhich the crack frontformed by the tips of all crackss
layer and the substrate are the same material, but differen&able, and progresses into the material when the drying front
in the humidity concentration produces the cracking at theddvances. In Sec. V we show that the array of cracks gener-
surface. In these two cases, the shrinking is due to changes @ed at the surface of the material becomes evenly spaced
the humidity concentration within the sample, but it can alsovhen it penetrates the sample, and that the typical width of
be due to the existence of nonuniform temperature distributhe stripes is determined mainly during the first stage of the
tions, which produces stresses and generates cracking. TREOCess, near the surface. In Sec. VI we briefly comment
problem of surface fragmentation has been studied in the lastoon the effects of other dryin@r cooling conditions than
few years, both theoreticallyl] and experimentally2]. the one studied previously. Section VII contains some impli-
There are situations in which cracks appear at the surfacedtions of our work for the study of the three-dimensional
of the material, and penetrate into the sample later on. &ase. Finally, in Sec. VIIl we summarize and conclude.
well-known example corresponds to the columnar fracturing
of basaltic lava, seen in many different geographical locay, - ;5|STATIC FRACTURE MECHANICS: ENERGETIC
tions [3]. A detailed description of this problem has only AND STRESS ANALYSIS
recently been foreshadowé¢d,5], and still some points re-
main obscure. The two-dimensional equivalent of the colum- One remarkable thing about the experiments cited in the
nar structure of basalts corresponds to the case of a twgreceding sectiofi6—8] is the fact that a large number of
dimensional material that driéer cools down starting from  cracks penetrate the sample in a coordinated and quasistatic
a free edge. As in the three-dimensional case, drying createsanner, as the external conditioithe humidity profile
internal stresses in the material, generating cracks that firghange. Then this problem is qualitatively different from a
appear at the free edge. As the drying front propagates to thgpical problem in fracture mechanics, where the propaga-
interior the cracks do so as well. There have been differention of a crack is usually an abrupt phenomenon and typi-
experimental realizations of this phenomenon. In one otally leads to the failure of the material. In standard fracture
them [6] the material was a very thin layer of a colloidal mechanics, stress and energetic analysis are two different
dispersion placed between two glass sheets, with one fregays of predicting the evolution of the fracturing process
edge, from which humidity can escape. In other experiment§9]. However, the equivalence of both approaches is not clear
[7], a slurry of ALOz-water mixture was deposited onto a [10], particularly in cases in which the cracks propagate at
substrate, and a glass sheet was placed a few millimetefarge speeds, which is almost always the case when failure
above it. A low, ultra dry N gas breeze was injected into the occurs.
slot above the sample. The,Mecomes saturated with water ~ The situation is different in our case. Cracks propagate
as it passes over the material, and a rather sharp drying froonly because the external humidity profile changes. If the
propagates with time in the same direction as the air flow. Aexternal conditions were stationary, crack advance would be
third realization corresponds to the drying of thin films of arrested. If we consider the configuration of the system as a
aqueous silica sol gel, where very nice patterns have bequoint in configuration spacéhe space spanned by all coor-
observed 8]. In all these cases the propagation of a set ofdinates of all particles of the materiaht each moment the
parallel cracks has been observed. system is at one minimum of the energy landscape. As the
A detailed theoretical description of this phenomenon ishumidity profile changes, the landscape changes itself, the
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minimum on which the system is located shifts, and the con-, cracks
figuration of the system gdapts so as to remain in the shiftec h(z )h h, 78 AN h(2) by,
local minimum. This is what we understand as a quasistatic
propagation of crackgl1].

Under these conditions, the propagation of cracks in a
two-dimensional geometry can be studied by two different
but equivalent procedures. Stress analysis consists of the ca
culation of the stress intensity factdig] K, andK,, of the
opening and shearing modes at the tips of the cracks presel
in the system. The propagation will occur in the direction z tl 2 t2>t1
along whichK;, =0, which coincides with that for whicK,
is maximum. Propagation actually occurs only if the energy FIG. 1. Sketch of the process studied. There is a sharp drying
relieved by the advance of the cracks is enough to overcomgrofile at depthz,, with z, increasing slowly with time. As this
the fracture energy needed to elongate the cracks. In theccurs, the crack frorftocated at) penetrates more deeply into the
quaS|stat|C case, these two energles will differ only InflnlteSI-mater|a| The d|stance z, (which can be positive or negative,
mally. depending on the parameteremains constant in time.

In the energetic procedure used to calculate crack ad-

vance, the total energfincluding elastic and crack eneigy usually lies on top of a substrate, we will study the case in
after virtual advances of the cracks is calculated. Cracks willyhich there is no interaction between the material and the
actually propagate only if this propagation reduces the tota§ubstrate. In the experiments of RET] this is achieved by
energy. Under quasistatic advance the energy reduction duitroducing a layer of some slippery material between the
ing propagation is infinitesimally small, and typically, there sample and the substrate. Then, all the stresses on the sample
is only one possible direction of propagation for each crackare originated internally, and are due to the existence of a
All other propagation directions would produce an increaseonuniform humidity concentration.
in the total energy of the system. It is known that in an isolatethamely, not clampacpiece

Both approaches are equivalent in the case of quasistatisf homogeneous material placed under a constant théomal
advance of the cracks. We will use stress analysis or enefumidity) gradient all stresses vanish in linear elastic ap-

-—

— Z(t,)

getic analysis according to convenience in each case. proximation[15]. Under these conditions cracks cannot ap-
pear at all, or if already present from the beginning their
1. ESTIMATIONS OF ELASTIC AND CRACK ENERGY propagation is completely halted. It is in fact crucial for the

. _ . _ ~ propagation of cracks that the humidity gradient is not con-
We will consider an isotropic and homogeneous materialstant within the sample.

and assume that linear elasticity can be appli&2]. It is We will take the edge of the semi-infinite sample as the
well known that in this case the material possesses only tw9=0 |ine, andz>0 in the interior. For convenience, we will
independent elastic constants3]. We will take as these two  a|so refer to the edge as the “surface,” and consider it to be
parameters the bulk modul@and the Poisson ratio. The  horizontally placed, in such a way that the cracks propagate
expansion or contraction properties of the material are dedown the material. At=0 the whole material is supposed to
scribed by a humidity expansion coefficiemt which is for-  have a constant humidity concentratibg In this situation
mally equivalent to the thermal expansion coefficient, i.e.the material is unstressed. Humidity concentration is as-
the relative change of linear siz /L of a piece of material sumed to decrease with tinhéz,t>0)=<h,. For any reason-
after changing the humidity concentratibrby some quan-  aple experimental realization of the drying process occurring
tity Ah is given by from thez=0 free surface, it is clear that at any time, well
inside the material we should reach the original humidity
oL/L=aAh. (1) concentration, i.eh(z—o%,t)=h,. Then the majority of the
material is always at constant humidty. In this region the
The ideal situation we will address consists of a semi-sample must be unstressed, otherwise it will store an infinite
infinite two-dimensional sample that is being dried from itsamount of energy. Then a boundary condition for our prob-
surface. The drying will be considered to be nonhomogelem will be that stresses go to zeroagoes to infinity. As a
neous, and we will model it by a humidity profile that is simplification of a possible experimental situation, we will
given by some functiom(z,t) depending on depthwithin ~ consider the case of an abrupt drying profitee Fig. ],
the material, and timé. The precise form of this function namely, h(z,t)=hy for z>zy(t), and h(z,t)=h; for z
will be specified later for different experimental situations, <zy(t), with h;<<hg, andzy(t) being an increasing function
but it is important to point out that we do not consider theof time.
case in which the appearance of cracks in the system modi- A given set of cracks will always correspond to a local
fies the drying process itself. Then our analysis applies moreninimum of the total energy of the system. The total energy
to cases as that described in Réf] and possibly Ref[8], is the sum of two different parts. One is the fracture energy,
but much less to that in Ref6] where evaporation of hu- namely, the energy spent in the creation of all fractures
midity through the cracks seems to be relev@ee also Ref. present in the sample. This is typically proportional to the
[14]). Although in the experimental situation the material total length of cracks in the material. The second part is the
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FIG. 2. The functiong(x) (continuous ling and y(x) (dotted

line) for a material with Poisson ratio=1/3. The values ok for

which y(x)>0 are those corresponding to a stable flat crack front.

FIG. 4. Position of the crack front=(z—zp)/| as a function of
u= 7/[C(aAh)?l], obtained by minimizing the total energy of the
system. The region at the left af, corresponds to a stable situation

which all tips of the cracks form a stable crack front, whereas at
he right of this value the flat crack front is unstable.

elastic energy stored in the sample. Let us suppose we hay
an evenly spaced array of cracks, defining stripes of wlidth

which have penetrated down to some distamcavith the
drying front being located at some positiap. The elastic
energyeg stored in the material per unit of horizontal length
must be proportional to the bulk modulus of the mate@al
and to the second power of the typical change in linear de
sity caused by the humidity gradiefthis change being
aAh, with Ah=(hy—h;)]. This is at the basis of linear elas-
ticity theory. Using the fact thdtandz— z, are the only two
relevant lengths for this geometrical configuratidré], di-
mensional analysis allows us to write down the following
expression foeg,,

region zo>z>7z there is a rather constant energy density,
associated with the change in humidity concentration, which
cannot be compensated by a change in density of the mate-
rial since the material here is attached to the part betpw
n['18]. Around the position of the crack front there is an in-
crease in the stored elastic energy, which is associated with

the elastic energy around the tips of the cracks.Z=or the
elastic energy density goes to zero, since here the existence
of the cracks makes it possible to relieve the elastic energy
accumulated prior to the crack formation. The linear depen-
dence ofg(x) asx— —o (i.e., for z<z;) comes from the
eq=(aAh)2Clg((z—2zo)/1), ) energy stored betweenandz,. Let us consider now the case
whenz>z, [Fig. 3(b)]. The elastic energy becomes indepen-
whereg(x) is a dimensionless geometrical functidv]. We  dent ofz, as the crack tips are in a region of material that is
have determined) numerically and the result is shown in ynstressed. The constant value gix) as x— +«~ comes
Fig. 2 as a continuous line. We can rationalize the generarom the energy stored in the independent stripes around the
form of the functiong(x), considering how the elastic en- position of the humidity front, which in this limit is well
ergy is distributed along thedirection. The total energg,, behind the crack front. Whe?r:zo there is a smooth cross-
is the integral over of the density of elastic energ§e«(2).  over between the two limiting regimes.
In Fig. 3 we show qualitatively the form afeg(z) for the To determine the actual position of the crack front in a
casexz<z,, andz>z,. Let us consider first the cage<z, realistic situation we will rely upon the energetic argument.
[Fig. 3@)]. See(z) is zero forz>zy, since as we already At any time during the drying process, the crack front will be
discussed, the material has to be unstressed-for. In the  located at the position that minimizes the total energy of the
system. Equation(2) gives the elastic energy of a set of
cracks that have penetrated down to the posiiom order
to get the total energg, has to be added to the energy cost
of creating the cracks. This part, when measured per unit of
horizontal length, will be called the crack energy,, and it
is simply given in terms of the specific energy fracture of the
material  in the form

eck= 721 ®3)

In order to determine the value af at which the fracture
front prefers to be located, we have to minimize the total
energye;= €t €q- The result we obtain is shown in Fig.
4, where we plot the most convenient position of the crack
FIG. 3. Sketch of the density of energig, as a function o front as a function of the parameter= 7/[ C(«A h)?]. For

for a set of fractures that has penetrated dowa<, (a), andz  small values ofi, x=(z—z,)/| takes large and positive val-
>z, (b). The contraction of the stripes is exaggerated for clarity. ues, i.e., the crack front is located well below the humidity

zZ

046147-3



E. A. JAGLA PHYSICAL REVIEW E 65 046147

front. This is due to the negligible contribution of the crack and the energy decomposes into independent terms, in the
energy compared to the elastic energy in this caseuAs form
increasex decreases, crossing zermamely, the crack front
coincides with the humidity fromtat u=0.66. x tends to

—oo asu approaches the limiting valug=1.14. In fact, for

u>uq the crack energy is so high that the cracks do not

penetrate the sample at §ll9)]. In order for the flat crack front to be stablag, must be

Under the conditions analyzed in this section, the CraCkpositive for any choice of the,, and thus of thé,. This

front will be located at a position such tha?{ Zo)/1 is given implies that
by the function plotted in Fig. 4. The crack front advances
only due to changes in the position of the humidity frapt a+bcogkl)+ccog2kl)+ - -- (7)

always keeping—z, as constant.

Aee,~2k |3 [a+b cogkl)+ccog2kl)+---]. (6)

must be positive for ak. In the limit of very smallk, Aeg is
IV. STABILITY OF THE FLAT CRACK FRONT equivalent to a uniform advance of the crack front, and then
, , is has to be a positive quantity, as the curvaturegiz) is
The previous analysis has_assumed that all cracks PEYways positivdsee Eq(2) and Fig. 4. On the other hand, It
etrate down to a uniform depth and has focused on what will be proportional to the sum of all coefficients in expres-
the value ofz is, on energetic grounds. It has to be comple-sion (7), i.e.,Ae';fO~a+ b+c+---. Then itis clear that if
mented, however, with a stability analysis of the crack front.an instability exists for some value &f it will occur at k
The necessity of this is clear from the following example. If = 7/1, where AeX ™' ~a—b+c—---. Then we will ana-
a material with an array of vertical cracks is loaded with alyze the stability of the flat crack front against a perturbation
uniform horizontal stresghis situation can be thought to be with k= 7/l. We took the equilibrium position of a crack
realized in our case i#<z,), there will typically be a single front obtained in the preceding secti(giotted in Fig. 4 and
crack that propagates and fractures the material. This is @alculated numerically the quadratic change in enekgy,
consequence of the fact that as soon as a single crack movesy(x)(aAh)2C§%/1 when a perturbation dé= 7/l and am-
forward a small distance, the stress at its tip increases, arglitude 6 is introduced. The dimensionless functig(x) can
those at the tips of the other cracks decrease. This generaties seen in Fig. Zdashed ling We see thaly is positive
an unstable, rapid propagation of a single crack. We will seénegative for x greater(lower) than x,=—0.038. In this
that in our case, this can be compensated by the fact thatay, we obtain that there are two regions in the plot of Fig.
stresses decrease ahead of the humidity front, and this can The one at the left ofi,=1.02 corresponds to a stable
stabilize a flat crack front. situation. If the parameters of the system make the pattern of
The same kind of energetic arguments used in the precedracks to lie in that region, then the time evolution of the
ing section will be used to determine the stability conditionsdrying procesqi.e., the increase with time of,) will pro-
of the crack front. Consider an evenly spaced set of crackgluce a smooth advance of the crack front, keeping always

labeled sequentially by an indg¢xwhere now the tips of the  the same value of the distanze z, to the humidity front. At
cracks are at vertical positios, which can be slightly dis-  the right ofu,,, the pattern is unstable. Should we have one
placed from the mean positian i.e., 2 =z+ §;, with 24, of those patterns at a given time, it will immediately propa-
=0. The horizontal positions of the cracks are givenxyy gate forward some of its crackieally, one of each two
=jl. The elastic energy of this configuration contains a terncracks, in order to reach a stable situation. This will imply
of the form (2), plus a correction that can be expanded inin particular that some cracks will remain halted. The further
powers of §; /1. The first-order term in this expansion van- evolution of the crack front will correspond to a new crack
ishes, asz;6;=0. The second-order term can be written in pattern with less cracké.e., with largerl) being propagated.
the form

V. APPEARANCE AND ORDERING OF CRACKS

Aeg=172la> &7+b> 88 1+CD & 0% ) Up to now we have assumed that a set of evenly spaced
! J ) cracks exists, and we focused on its stability conditions. We
(4) | . . .
will study now how this pattern can appeatr, starting with the
Successive terms contain “interactions” between more disP oce>> at the surface. Cracks are not expected to appear
evenly spaced at the surface. In fact, it is known in the one-

tant cracks. As the elastic energy is a local quantity, we ex-. ;
pect |a|<|b|<|c|<---. Any small displacement of the dimensional models of surface fragmentat[@d] (that can

. o be used to represent the first stage of cracking of our two-
_crack front, Eieflned by the q’uantltleﬁ? can be deco_mposed dimensional problepnthat the distribution of fragment length
in a sum of “normal modes,” by going to the Fourier repre-

sentation is strongly dependent on the presence of small inhomogene-
ities in the material, making the fragment length distribution

broad. But we will see that as the superficial cracks penetrate

5= Bexpikx), 5 the sample they become evenly spaced. We will first discuss

! Ek Exp(ikx’) ©® the process of nucleating new cracks at the surface, and then
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argue that the cracks become evenly spaced as they penetrafesmall inhomogeneities in the samgl]. But a superfi-

the sample. cially uneven set of cracks has a tendency to become evenly
spaced as it penetrates the sample. The reason for this ten-
A. The appearance of cracks at the surface dency can be understood on an energetic basis. For a fixed

number of cracks the evenly spaced configuration corre-

f d before th terial get ked. the st sponds to the minimum of elastic energy. It is then clear,
surtace, and betore the material gets cracked, the Sresses ng the energetic arguments, that this configuration will be
be calculated very simply. The state of the system corre:

; . ) . ~approached during the propagation pro .
sponds to the material being completely unstrained honzon-pﬂ is important t% cIarFi)fy Fheg differgnt %fcts that the in-

:a”t)é (cr?ns[((::iﬁrlng Ithme utr;]s'iramed Statﬁ .as.(tjhatthcorretSp(.)nld'nlgomogeneities have on the creation and propagation of
o the humidity value, that occurs well inside the materia cracks. For the superficial layer, inhomogeneities are rel-

Under this cond_mon_ a l_Jmform horizontal streBg appears evant, and responsible for the broad distribution of fragment
for all z<z,, which is simply calculated a8o=CaAh. In  1n4h5121] since at the beginning all the surface is uni-
order fp rthe f|rst.crack t.o appear, this value has to overcomf'ormw stressed, and tiny differences in the properties of the
the uniform traction resistance of the matefial[22]: material will dictate which point of the surface will fail first.
CaAh>T, . (8) However,_ once the array of cracks has been defin_ed at the
surface, inhomogeneities play a secondary role, since new
If this relation is not satisfied, no cracks will appear whatso-cracks do not appear during penetration, and the elastic en-
ever. Assuming that the relatid8) is satisfied, the first crack €rgy is only very weakly dependent on the precise distribu-
will nucleate at the surface. This crack penetrates the sampléon of defects. Then the evolution of the pattern is basically
as long as this penetration reduces the total energy of thée same as if inhomogeneities were absent.
System_ In our case, the crack penetrates on|y down to a The preViOUS energetic arguments prediCt the trend toward
distanced, of the order ofz,, where the humidity front is evenly spaced cracks as they penetrate the sample. Stress
located. The horizontal stress at the surface is now zero at tralysis allows to reobtain and make this result quantitative.
position of the Crack, and increases as we move away frorM\/e have calculated the stresses that are present in the semi-
it, reaching the valud, at large distances from the crack. infinite sample with a sharp drying front, in the presence of a
This means that new cracks will nucleate away of the firsiparticular uneven set of parallel cracks. We took an infinite
one, in regions where relatia®) is still satisfied. The num- Set of cracks separated sequentially by distahgesnd .
ber of cracks nucleated at the surface will typically be theFor this geometrical configuration we have determined nu-
minimum number that makes the horizontal stress at everinerically the direction of maximum opening strészode ),
point of the surface lower thahf, . The typical distance be- at the tips of the fractures, and characterized it by its afigle

When the drying front penetrates the material from its

tween cracks can then be estimated to b21] with respect to the direction of forward advance. The first
result is thatd always points in the direction of making the
[=dof(To/T,), (9)  pattern more evenly spaced. The actual value& @ abso-

) ) o lutely independent of the values Gfand » of the material,
where the %eometr}cal functioh(T,/T,) goes to infinity  and also on the valugh of the step of the humidity front. It
whenTo—T,", and is of order 1 foifo>T, . Typically, I is s in fact a quantity that only depends on the Poisson ratio
a few timesd,. _ , of the material and the values of=(z—z,)/l and (;

If we stick to the ideal sharp drying front we have been_|2)/(|l+|2)_ The results for the angl@, for a material
studying, the first crack appears for an infinitesimally small, i, ,,—1/3 can be summarized as followsis rather inde-

value of z,, the only restriction is that the relatiof8) is pendent ofx, and within a maximum 10% error, it can be
satisfied. Therefore, since the depth of the first cigls of |, ritten as

the order ofz,, we should expect a very dense set of super-

ficial cracks. However, this unrealistic situation is removed if 0(deg=291,—1,)/(1;+1,). (12)

we note that any physical drying front will have some typical

(finite) humidity gradientVh. At the moment when relation  The yalue of vanishes fot,=1,, as in this case the pattern

(8) is first satisfied(with Ah being now the difference be- s actually evenly spaced, and the cracks advance straightfor-

tween humidity concentrations right at the surface, and Weu/vardly by symmetry. The limiting cadg>1, gives §=29°

inside the materig) the first crack will penetrate down to a [24]. This is the maximum bending we can expect from a

distance given crack, in the process of uniformizing the widths of the

_ _ stripes. Note that as a consequence of the fact that there are

do=AR/Vh=T,/(CaVh), (10 no typical lengths in Eq(11), the length needed for the pat-

and the typical distance between cracks at the surface will big™ 0 become evenly spaced will be proportional to the
a few times this distance. typical width of the stripes.
Once the cracks have started to deviate in order to reduce

the elastic energy as much as possible, the further detailed

prediction of its evolution becomes more difficult, since now
The cracks that appear at the surface of the sample nuclere should calculate stresses ahead of a set of nonparallel

ate at positions that are strongly influenced by the presendeactures(or alternatively, the elastic energy of this nontrivial

B. How the distribution of cracks becomes uniform
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configuration of curved cracksHowever, the main conclu- poses, however, some interesting problems, because typi-
sion that the pattern becomes evenly spaced in a distance cdlly, the expected perfect hexagonal pattern is not reached,

the order of the stripes widths remaif26]. but a collection of polygons with a different number of sides
and areas is observed instead. It has been recently demon-

VI. DEPENDENCES ON THE CHARACTERISTICS OF strated[5] that this is a consequence of the fact that the
THE DRYING FRONT pattern starts being disordered at the surface, and in the pro-

cess of minimizing the energy it is not able to reach the

The sharp drying front is an idealization that is nevergpgolute minimum(namely, the honeycomb patterbut is
exactly realized in practice. For the experiments of IREF, trapped in a metastable minimum. Based on the arguments
for instance, a typical distance over which humidity changesoy the two-dimensional case, we can also expect in three-
is expected. In other cases in which the drying is throughyimensions that the typical width of the columns is set by the
surface diffusion, the humidity profiles are still smoother. As; pical distance between cracks at the surface, and it is not
we have already discussed, the stability reason of a flat cragkogified with the further penetration. In fact, this is what is
front in the case of a sharp humidity step is due to the rapigyperimentally observed, since columns are seen to keep
reduction of stresses ahead of the crack front. Smoother hyneir horizontal size over distances that reach a hundred
midity profiles will produce a weaker tendency to generate gimes the width of the columns. For the three-dimensional
flat crack front, and it can even occur that a flat crack front isgase, the cooling through diffusion plus convectiamd/or
never stable if the humidity profile is smooth enough. In thisragiation at the surface is the most realistic model of cooling
case, a pattern of bifurcations pf the crac_k_ f_ront has beegy consider. Although this type of cooling can lead in two
predicted[27]. Note that an additional stabilizing factor of gimensions to the instability of the flat crack front, this is not
the crack front exists when the drying is favored by the prespecessarily so in three dimensions, since in this case all frac-
ence of the cracks themselvst], a case we have not ad- yyres form a connected structure, and this generates an addi-

dressed here. tional tendency to stabilize the crack front. These issues and
some additional ones particular to the three-dimensional case
VII. IMPLICATIONS FOR THE THREE-DIMENSIONAL will be discussed in a forthcoming paper.
CASE
The same phenomenon we have been discussing acquires VIII. SUMMARY AND CONCLUSIONS

novel characteristics in a three-dimensional geometry. It has ) ) )

a beautiful realization in the geological formations named !n this paper we have focused on a two-dimensional ma-
columnar basalts, which can be reproduced in a kitchen exérial that cools down or dessicates from one edge. We stud-
periment using corn stard28]. When an originally hot vol- ied the con_dltlons under which a set of cracks penetrate the
canic lava flow starts to cool dowgafter solidification, the ~ Sample during the process. We showed that these cracks have
thermal stresses generate cracks at the surface, which progatendency to become evenly spaced, and analyzed the con-
gate progressively towards the interior of the igneous bodyqltlons for which _aII the tips (_)f tr_le cracks form a plane front.
There are many coincidences with the two-dimensional cas&Ur results provide a quantitative framework to analyze re-
and also some new featurE®-5]. Cracks are known to ap- Cent experiments. E>_<ten5|ons to thg three-d!mgnS|onaI case
pear at the surface and at later times propagate to the interigi€ €xpected to provide both a qualitatively similar scenario,
At the surface the pattern of cracks is rather disordered, bi@nd also some new features that will be fully developed else-
becomes progressively ordered as it penetrates the materi¥fhere.

In three dimensions, the tendency to order manifest in pro-
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